読者です 読者をやめる 読者になる 読者になる

seri::diary

プログラミングのこととかポエムとか

技術書を読む意味について考えること

先日書いた記事が妙にバズってしまった。

別段新しいことをやったつもりはなく、NNは初めて勉強したけど専門外の知らないことを突然勉強するのは今に始まったことじゃないし、みんな普通にやってるもんだと思ってた。

それでもバズってしまったのは、あの書籍が発売直後からAmazonでずっと在庫がなくなるなどして相当の注目を集めていて、 Deep Learning というワードがバズワード的に流行っていたから、という部分が大きいだろう。そうでなければ、あんな下手な書評がこんなにバズらない。

自分は無名なエンジニアであり、「とりあえずあの人が書いているんだから流行っているのだろう」と認識されるようなインフルエンサーでもない。ついでに言えばDeep Learning自体はもっと前、それこそ数年前から聞くようになった単語であり、それを今更勉強しているのは本当に今更感がある。本当は去年Tensor Flowがリリースされてちょっといじってみた時に深く勉強すべきだったと思っている。出遅れてしまったなぁという反省がある。今からキャッチアップして、TensorFlowやChainerを使って業務に活かすにはかなり時間がかかるだろう。ただ、それでも今のところはいくつかNNで解決するのに適していそうな問題がいくつか手元にあるため、今後も継続して勉強していきたい所である。

で、話はちょっと変わるのだが、人はどうして技術書を読むのだろうか。自分は技術書をそこまで読む方ではないのだが、基本的にNNのように知らない知識を効率よく勉強するためである。

逆にES界隈など、変化が激しい(今年は落ち着きつつあるようだが)分野については、ネット上の情報と書籍の情報での鮮度に差が激しいのでネット上で鮮度の高い情報を調べる事が多い。仕事においては後者に該当する分野の技術を使ってる事が多いので、ネットで公式リソースに直接当たるケースが圧倒的に多い。

特にruby界隈は、言語自体もgemもコミュニティ内で議論されている内容まで追わないと状況が分からないことが結構ある。前に、ruby2.1.x(パッチバージョンまでは覚えてない)でバグを踏んで、その情報はbugs.ruby-lang.orgのissueにしかなかったことがある(どれかは忘れたが)。単にググって見つかる情報だけではもう足りなくなってきている。それぐらい情報の更新頻度が高い。

ではなぜ技術書も読むのかというと、ある程度枯れて体系化された知識は技術書の方がよくまとまっている事が多いからである。リアルタイムに日々更新されるコミュニティの議論やmasterブランチのcommit logと比べると、いわば綺麗に編纂され直された歴史書とでも言うのだろうか。そういう感覚が自分にはある。歴史書には瑣末なことが書かれないように、本質的な内容だけがきれいにまとめられる余地がある。自分は技術書に対してそういうものを期待しているし、そういうものが書かれている技術書を中心的に読む傾向がある。

今年読んだもので言えば、TCP/IP, HTTP1.x, HTTP2.0の歴史と昨今のN/W界隈で話題になってることまで広く説明されている「ハイパフォーマンスブラウザネットワーキング」がまさに「歴史書」といった感じの本。@kazuhoさんのhttp2に関するスライドを読んでいてTCP/IP輻輳制御の話がよく出てくるのだが、ネットワーク全然知らないので良くわからんということで手に取ってみた。非常に広く・深くといった感じで昨今話題になっていることを理解するのに最適な一冊だった。こういう、過去の経緯から最新の事情までを広く、かつ分野も広く知りたいような時には技術書というフォーマットが強いと特に感じた一冊でもある。

ハイパフォーマンス ブラウザネットワーキング ―ネットワークアプリケーションのためのパフォーマンス最適化

ハイパフォーマンス ブラウザネットワーキング ―ネットワークアプリケーションのためのパフォーマンス最適化

あと技術書というか学術書だが、統計や機械学習といったアカデミックな分野での情報発信が根強い分野は学術書にしかないネタがまだまだ多いと感じているので、この分野はまだ書籍に優位性がある。

学術書、といっても今年は統計、機械学習関係と自然言語系の本しか買ってないのだが、一冊の値段が結構お高いので買うのに気合が必要だったりするのだが、大学に行って勉強するのに比べれば低コスト勉強できるのではないかと思う。

が、逆にアカデミックな分野は専門の人とディスカッションしたり質問したりしながら勉強しないと流石に厳しいなぁと感じる分野でもある。「データ解析のための統計モデリング入門」は初学者の自分でも分かりやすい部類の統計の本だと思うのだが、「こういう場合はどうだろう?」「ここはどういう意味だろう?」というクエスチョンマークを頭に沢山浮かべながらも調べる術がないので気合でゴリ押して読む感じになってしまうので、やはり大学の教科書的な使われ方を想定してるんだろうなという気はした。実際作者の久保拓哉弥先生は北大の准教授(出版当時で今は不明)なので、いつか直接この本に関する講義を受けてみたいなぁと思った(まぁ自分が関東にいる限り無理だろうけど…)

何が言いたいかというと、そろそろもう独学での勉強が限界に来ている。